
NISTIR 6925

Calculation of Obstructed View
Factors by Adaptive Integration

George N. Walton

NISTIR 6925

Calculation of Obstructed View
Factors by Adaptive Integration

George Walton
Indoor Air Quality and Ventilation

Building Fire and Research Laboratory
National Institute of Standards and Technology

Mail Stop 8633
Gaithersburg, MD 20899-8633

November 2002

U.S. DEPARTMENT OF COMMERCE
Donald L. Evans, Secretary

TECHNOLOGY ADMINISTRATION
Phillip J. Bond, Under Secretary of Commerce for Technology

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
Arden L. Bement, Jr., Director

Abstract

This report describes the use of adaptive integration for the calculation of view factors between
simple convex polygons with obstructions. The accuracy of the view factor calculation is controlled
by a convergence factor. The adaptive integration method is compared with two other common
methods implemented in a modern computer program and found to have significant advantages in
accuracy and even advantages in computational speed in some cases.

Keywords: computer algorithm, shape factor, thermal radiation, view factor

TABLE OF CONTENTS

Abstract... iii

Background ..1

Algorithms for Unobstructed View Factors ..1

Algorithms for Obstructed View Factors ..8

Benchmark Tests..12

Conclusions and Possible Future Developments...15

Acknowledgement ..15

References...16

Appendix: Numerical Processing of Convex Polygons..17

iii

Background

Thermal radiation is typically as important as convection in the overall heat balance in buildings.
Radiant processes include the distribution of long wavelength radiation within rooms and between the
building envelope and the environment plus the distribution of short wavelength (solar) radiation onto
the building envelope and into rooms. The mathematical theory of thermal radiation is well
established, but it can lead to complex code and/or very slow calculations. The following discussion
will consider only the case of radiant interchange between diffusely reflecting and absorbing surfaces
with no absorption in the intervening air. This condition is handled well by the net radiation
exchange method described by Hottel and Sarofim (1967, chapter 3). It starts with the calculation of
view factors. The problem with view factors is not that they are inherently difficult to compute, but that
the calculation time increases exponentially with the number of surfaces involved. Algorithms that are
effective for a small number of surfaces may require a hopelessly long computation time for many
surfaces.

Consider a situation involving N surfaces. Since each surface may potentially interact with every other
surface, there are N2 interactions, or view factors. Even simplifications, such as the reciprocity relation
(section 2.1) and the fact that a flat surface cannot view itself, reduce the number of view factors only to
N(N-1)/2, which is still of order (N2). If it is known that some, but not which, surfaces can obstruct (or
“shade” or “occlude”) the views between surface pairs, it is necessary to check N-2 surfaces as possible
obstructing surfaces for each view factor. This gives N(N-1)(N-2)/2 obstruction checks, that is, O(N3).
In addition, the procedures for computing obstructed view factors are slower and less accurate than those
for unobstructed view factors.

Most American energy analysis programs are currently using the radiation calculation methods that
were developed two or more decades ago and have been essentially unchanged since. Those methods
were very limited in their capabilities because of the lack of good methods for computing obstructed
view factors. Since then many methods have been developed by many organizations including NIST:
“Algorithms for Calculating Radiation View Factors Between Plane Convex Polygons with Obstruc-
tions” (Walton, 1986); and “Computer Programs for Simulation of Lighting/HVAC Interaction”
(Walton, 1993). A recent extension of the NIST methods looks very promising in terms of speed and
accuracy for the class of problems that occur in the simulation of heat transfer in buildings. That
extension – the use of adaptive integration – is described and tested in this report.

Algorithms for Unobstructed View Factors

Before discussing the calculation of obstructed view factors, it is necessary to review methods for the
calculation of unobstructed view factors.

Double Area Integration (2AI)

The fundamental expression for a view factor between isothermal, black-body, diffusely emitting and
reflecting surfaces is

 122
21

1
21

21

)cos()cos(1 dAdA
r

gg
A

F
AA
∫∫

⋅
=→ π

 (1)

where A1 and A2 are the areas of surfaces 1 and 2, g1 and g2 are the angles between the unit normals 1n
and to surface differential elements dA2n 1 and dA2 and the vector, r, between those differential
elements, and r is the length of that vector. This nomenclature is illustrated in Figure 1. The integration
over both surfaces leads to the name “double area integration” (2AI).

1

Double Line Integration (2LI)

Stokes’ theorem can be used to convert the area integrals in equation (1) to line integrals:

 ∫∫ ⋅=→

21

21
1

21)ln(
2

1

CC

vdvdr
A

F
π

 (2)

where C1 and C2 are the boundary contours of the surfaces and r is distance between and 1vd 2vd ,
which are vector differential elements on the two contours. These elements are also shown on Figure 1.
This is method is called “double line integration” (2LI) because of the two line integrals.

Figure 1. Geometry and Nomenclature for 2AI and 2LI Calculations

Numerical Calculations for Plane Polygons

Equation (1) can be expressed in terms of simple vector operations as follows. Since ,

and, similarly, cos(
)cos(11 grnr =⋅

rnrg /)cos(11 ⋅= rnrg /) 22 ⋅−= , where the minus sign is necessary because r

() is pointing toward surface 2 rather than away. The expression 21→≡ r 2
21)cos()cos(

r
gg

 can be

replaced by 2
21

)
))(

r
nr

(
(

r
nr
⋅

⋅⋅−
, which involves only simple arithmetic operations -- the actual values of

r, g1, and g2 are never computed. Equation (1) can be integrated numerically by dividing both surfaces
into small finite subsurfaces as also implied in Figure 1.

2

 ji
ji

AA
rr

nrnr
A

F ∆∆
⋅

⋅⋅−≈ ∑∑→ 2
21

1
21)(

))((1
π

 (3)

If, for example, we restrict the surface geometry to flat rectangles (1n and 2n are then constant for each
surface), and each surface is divided into N2 subsurfaces (i.e., N divisions along each edge), the
expression inside the summation will be evaluated N4 times to compute the view factor, i.e., 2AI is an
order (O)N4 algorithm. Both the calculation time and the accuracy of the computed view factor should
increase with increasing N.

The ln(r) term in equation (2) can be simplified by the identity () () 2/lnln rrr ⋅=

jv∆
. The dot product of

the contour vector elements, , equals , where is the length of 21 vdvd ⋅)cos(21 Φ∆∆ vv jvd and Φ
is the angle between the two vector elements. When evaluating this term between any two polygon
edges, p and q, the angle Φpq is constant. Equation (2) can then be approximated for numerical
integration by

 () ji

N

i

N

j

E

p

E

q
pq vvrr

A
F ∆∆⋅Φ≈ ∑∑∑∑

= == =
→

1 21 2

1 11 11
21 ln)cos(

4
1

π
 (4)

where E1 and E2 are the number of edges of polygons 1 and 2 which are each divided into N1 and N2
short vectors. Again considering rectangles gives E1 = E2 = 4 and letting N1 = N2 = N, 2LI is an
O(16N2) algorithm. Whenever the surfaces are oriented so that two edges are perpendicular, Φ
for that pair of edges allowing the numerical integration to be skipped for that pair of edges.

0=pq

Three other methods are available for computing view factors between polygons.

Single Area Integration (1AI)

Figure 2. Single Area Integration

Hottel and Sarofim (1967, p 48) give a formula for a
view factor from an infinitesimal area, dA1, to polygon
A2. Integrating his formula over polygon A1 gives:

 ∫∑
=

→ ⋅=
2

2

1
1

1
21 2

1

A

E

i
i ng

A
F

π
 (5)

where is the unit normal to polygon A1n 1 and i is a
vector whose magnitude is equal to the angle
subtended by an edge of polygon A2 and facing
outward from the plane passing through that edge and
the point at dA1. This geometry is shown in Figure 2.
Equation (5) can be expressed in terms of simple vector operations as follows. Consider a and b to be
two consecutive vertices defining an edge of polygon 2 and p the point representing dA1. Let

b be the

vector from p to b and the vector from p to a. Also let ca ba ×= , ce = , and d . Then the
direction of g is given by c and the magnitude by tan(g) = e/d.

ba ⋅=
e/

g

3

Substituting into equation (5) gives

 






⋅
= −

=
→ ∫ ∑

i

i

A

E

i i

i

d
e

e
nc

A
F 1

1

1

1
21 tan

2
1

2

1

π
 (6)

If either d or e equal 0, equation (6) is undefined. e may be 0 only if a = 0, b = 0, g = 0, or g = π. None
of these conditions should occur as long as dA1 is above A2. d will equal 0 only if a = 0, b = 0, or g =
π/2. It is certainly possible to have g ≈ π/2 in which case it is best to replace with

 which should be defined for all reasonable geometries. The tan

(deg /tan 1−=)
)(edg /tan2/ 1−−= π -1 function is

used in the evaluation of g because it is less sensitive to round-off errors than the sin-1 or cos-1 functions
at certain angles. In benchmark tests it has also been faster. Replacing the integral by a summation over
finite areas gives

 j

N

j

E

i i

i

i

i A
e
d

e
nc

A
F ∆


























−⋅≈ ∑∑

= =

−
→

2
2

1 1

11

1
21 tan

22
1 π

π
 (7)

For a pair of rectangles this is an O(4N2) algorithm.

Single Line Integration (1LI)

Mitalas and Stephenson [1966] present a method where one of the contour integrals in equation (2) has
been solved analytically:

 ()∑ ∫∑
= =

→ −⋅+⋅+⋅Φ=
1 2

1
1

11
21)ln()cos()ln()cos()cos(

2
1 E

p

E

q
pq vdrfusgstht

A
F

π
 (8)

where vectors s, t, and u and angles f, g, and h are
functions of the location of on the edges of
surface A

1vd
1 as shown in Figure 3. For two rectangles

this is an O(16N) algorithm with very complex
calculations for each pair of edges. The details for
simplifying the geometric calculations will not be
presented. See Walton (1993).

Analytic Line Integration (0LI)

Schröder and Hanrahan [1993] developed analytic
expressions for the double line integrals for any pair
of polygon edges. These expressions depend on the

geometry of the edges being relatively simple for parallel edges and very complex for skewed edges.
Their report is available on-line at http://www.multires.caltech.edu/pubs/ffpaper.pdf. There is no
numerical integration between any of the pairs of edges.

Figure 3. Single Line Integration

4

http://www.multires.caltech.edu/pubs/ffpaper.pdf

View3D

All five methods listed above have been implemented for testing in a computer program called View3D.
The analytic line integration method was adapted from another program, Chaparral, to be described
later. 0LI is included for the following performance calculations but is not used in View3D in the later
benchmark comparison tests.

Computational Performance: Speed

Figures 4 and 5 show the times to compute 100,000 view factors (on an 866 MHz Pentium-based
computer) using different numbers of surface and edge divisions for the different algorithms for different
surface geometries. In Figure 4 the geometry is two squares on the opposite sides of a cube which has 8
pairs of parallel edges for the line integral methods. The curves in this figure show the order of the
different algorithms: 2AI - O(N4), 2LI - O(8N2), 1AI - O(4N2), and 1LI - O(8N). The 0LI solution
requires only 2.5 s for this configuration. This happens to be about the time for all four approximate
algorithms with N = 4.

Timing Tests - Part 1

0.0

2.0

4.0

6.0

8.0

10.0

12.0

1 2 3 4 5 6 7 8
Edge Divisions

se
co

nd
s

/ 1
00

,0
00

 v
.f. 2AI

1AI
2LI
1LI

Timing Tests - Part 2

0.0

2.0

4.0

6.0

8.0

10.0

12.0

1 2 3 4 5 6 7 8

Edge Divisions

se
co

nd
s

/ 1
00

,0
00

 v
.f. 1LI-a

1AI
2LI
1LI-b
1LI-c

 Figure 4. Timing Tests – Part 1 Figure 5. Timing Tests – Part 2

Figure 5 shows results for some other surface geometries as follows:
 curve description time for 0LI

1AI two squares with no parallel edges
 2LI two squares with no parallel edges
 1LI-a two squares meeting to form an angle 28 s
 1LI-b two squares with no parallel edges 218 s
 1LI-c two perpendicular squares meeting at a common edge 1.5s

The time for the 0LI method increases dramatically when there are non-parallel edges due to the
numerical calculation of some special functions required for those cases.

5

Computational Performance: Accuracy

Earlier work (Walton, 1986) found that
the numerical integrations of the line
integrals could be much more accurate if
Gaussian integration were used. In
Gaussian integration, or ‘quadrature’, the
function is evaluated at specially selected
points instead of uniformly distributed
points. The process is described in most
introductory numerical analysis texts.
Such uneven spacing can also be used in
evaluating area integrals. Figure 6 shows
the positions of such points for rectangles
and triangles. The Gaussian integration points and weights for rectangles and parallelograms are
obtained by applying 2-, 3-, and 4-point 1-D forms in both directions parallel to the edges (Press et. al.,
1992, p 163). The Gaussian coefficients for triangles are more complicated (Moan, 1974). In Figure 7
the line and area integrals have been evaluated using uniformly spaced points (rectangular integration),
while in Figure 8 Gaussian integration has been used for computing the view factor between surfaces on
opposite sides of a cube. Note the different vertical scales.

Figure 6. Points for Gaussian Area Integration

Opposed Squares - Rectangular Int.

0.0001

0.001

0.01

0.1

1

1 2 3 4 5 6 7 8 9

Edge Divisions

Er
ro

r I
n

C
om

pu
te

d
F

2AI
1AI
2LI
1LI

Opposed Squares - Gaussian Int.

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

1 2 3 4 5
Edge Divisions

Er
ro

r i
n

C
om

pu
te

d
F 2AI

1AI
2LI
1LI

 Figure 7. Figure 8.

The superiority of Gaussian integration is dramatic. The difference from the analytic value (0.199825) is
less than 10-6 at N=4 for the 1LI, 2LI, and 1AI methods and N=5 for the 2AI method. Such accuracy is
not achieved with N=10 using rectangular integration.

6

Figures 9 and 10 show the results for view factors between adjacent surfaces on a cube.

Adjacent Squares - Rectangular Int.

0.0001

0.001

0.01

0.1

1

1 3 5 7 9
Edge Divisions

Er
ro

r i
n

C
om

pu
te

d
F

2AI
1AI
1LI-n
1LI-a

Adjacent Squares - Gaussian Int.

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

1 2 3 4 5 6
Edge Divisions

Er
ro

r i
n

C
om

pu
te

d
F

2AI
1AI
1LI-n
1LI-a

 Figure 9. Adjacent Squares – Rectangular Int. Figure 10. Adjacent Squares – Gaussian Int.

The 2LI is not used in these tests because r goes to zero at some integration points along the edge shared
by the adjacent surfaces. 1LI-n uses numeric integration along the common edge while 1LI-a uses an
analytic formula and is significantly more accurate. For this geometry Gaussian integration works very
well for the 1LI-a and 1AI methods producing errors less than 10-6 for N = 4. The 2AI method is least
accurate and Gaussian integration is worse than rectangular integration.

A large number of other tests indicate that the numerical integration methods require many divisions
when the surfaces are relatively close, but they are quite accurate with very few divisions when the
surfaces are relatively far apart. In the NIST computer program, View3D, ‘relative separation’ is
computed as the distance between the two surface centroids divided by the sum of radii enclosing both
surfaces. Relative separations greater than three quickly produce very accurate view factors.

It can be reasonably argued that the analytic view factor algorithm should be used for all cases where
there are no view obstructions between the two surfaces. On the other hand, when the surfaces are
widely separated, and especially when some pairs of edges are not parallel, some time can be saved by
numerical integration with little loss of accuracy.

It is important to use the appropriate number of divisions in the numerical integration – too few will
produce an insufficiently accurate view factor and too many will waste computation time. This can be
handled by a form of adaptive integration – beginning with one edge division [k=1], compute successive
values of the view factor with increasing numbers of divisions until the difference between two succes-
sive values is less than some specified tolerance, ε.

 min

][]1[AAFAF kk ε<−+ (9)

This should be done only under conditions where the maximum value of k is expected to be small, i.e.,
when the surfaces are relatively far apart. The cost in terms of additional complexity in the program to
determine when to use numerical integration would have to be recovered over the life of the program.

7

Algorithms for Obstructed View Factors

When a third surface is added to the problem it may partially or completely block the view between the
first two surfaces, or it may have no effect. Calculation of the partially obstructed view factor between
two surfaces can be done by modifications to the area integration methods.

Double Area Integration with Blockage

Equation (3) can be modified to account for obstructions by the addition of a single term:

 ji
j

ji
i

AAb
rr

nrnr
A

F ∆∆
⋅

⋅⋅−≈ ∑∑→ ,2
21

1
21)(

))((1
π

 (10)

where the blockage factor, bi,j, is zero if
the ray connecting ∆Ai to ∆Aj is
blocked by the third surface and it is
one if the ray is not blocked. These two
conditions are shown in Figure 11
where the ray between dA1 and dA2 is
not blocked while the ray between dA1
and dAS is blocked. Multiple obstruc-
tions are easily handled by checking
each ray against each obstruction until a
blockage is found or all obstructions
have been tested.

Single Area Integration with Projection

An alternate method is to project a
‘shadow’ of the obstruction onto the plan
obstruction over a corner of surface 2.
summation is around the edges of the un
changes with each different integration
obstructions there are multiple shadows.
polygons are given in the appendix. The
thus requires that more complex surfaces
polygon processing method provides be
subtracted the view to the shadow(s) fr
compute obstructed view factors.

Figure 11. Partially Obstructed View
e of the second surface. Figure 11 shows the shadow of the
 is then computed by equation (7) where the inner

shaded portions of surface 2. The position of the shadow
/projection point on surface 1. When there are multiple
The calculation details for processing surface and shadow
 method used requires that the polygons be convex which
 be decomposed into simpler convex polygons. The current
tter worst-case performance than previous methods that
om the unobstructed view. View3D uses this method to

21→F

8

Adaptive Integration for Obstructed View Factors

Adaptive integration is used to control the
number of points used for the 1AI integration.
Two view factors are computed for parallelo-
grams using the 9- and 16-point forms shown in
Figure 6 (or the 7- and 13-point forms for tri-
angles.) If equation (9) is satisfied for those two
values the result of the higher order integration
is accepted. Otherwise, the surface is divided
into four congruent subsurfaces as shown in
Figure 12, and the view factors are computed
from each of those subsurfaces. This process is repeated recursively (as shown by the subdivision of the
lower right subsurfaces in Figure 12) until equation (9) is satisfied or a limit to the number of recursions
is reached. The subsurface view factors are then summed to complete the view factor. 21→F

Figure 12. Adaptive Division of Polygons

This method of surface subdivision automatically provides greater refinement over the portions of the
surface where it is needed. General forms for higher order integration points for triangles are not readily
available. More general convex polygons are first divided into triangles.

Eliminating Potential Obstructions

In an N surface problem there are potentially N-2 view obstructions for every pair of surfaces. It is there-
fore very important to reduce the number of potential obstructions as quickly as possible. View3D
begins by creating a list of potential view obstructing surfaces that excludes those surfaces that can never
be obstructions, such as the surfaces that form a box-shaped enclosure. A surface cannot be an
obstructing surface if all other surfaces are on or in front of the plane of the surface. This test, and
several later tests, must determine the relationship between the vertices defining one polygonal surface
and the plane containing another surface. The distance of a vertex in front of (+) or behind (-) a plane
is given by
 (11) wzzyyxx ssvsvsvd −++=
where (vx, vy, vz) are the coordinates of the vertex and (sx, sy, sz, sw) are properties of the plane: sx, sy,
and sz are the direction cosines of the vector normal to the plane and where zzyyxxw pspspss ++=

)0(pp = is for any point on the plane.

The elements in the lower half of the matrix of view factors Fi,j are computed by row from i = 1 to i = N
and within each row from j = 1 to j = i-1. (Fi,i = 0 for flat surfaces.) When the elements of row i are
computed, a reduced list of obstructing surfaces is created that excludes those surfaces that are
completely behind surface i.

The view between a pair of surfaces, i and j, may be obstructed by their own positions and orientations.
It may be that surface i is entirely behind surface j or that surface j is entirely behind i giving Fi,j = 0. It is
also possible that a surface is only partially behind the plane of the other surface, in which case it is
necessary to remove, or 'clip', the portion of the one surface which lies behind the other before
continuing with the view factor calculation. Clipping may increase the number of vertices by one.

A series of tests are then made to further reduce the list of potential obstructions. The first removes
any surface where the sphere enclosing the surface lies outside the cylinder enclosing surfaces i and j.

9

This test uses a simple vector cross product calculation. When surfaces i and j have significantly
different radii, it is advantageous to use a slightly more complex test based upon a cone rather than a
cylinder. This test is most useful when the surfaces have similar sizes as will often occur in the
critical large N case. The second test involves determining the minimal box containing both surfaces
i and j. If a surface is entirely outside that box, it cannot be an obstructing surface. This test works
best when surfaces are aligned along the axes of the Cartesian coordinate system. There are three
surface orientation relationships where surface k cannot obstruct the view from between surfaces i and
j: (1) k entirely behind j (j cannot see k), (2) i and j entirely in front of k, and (3) i and j entirely
behind k.

If these tests have removed all surfaces from the list of potential obstructions, Fi,j will be computed by
one of the algorithms for unobstructed view factors. Otherwise, one more test will be made to determine
whether the shadow of the obstructing surfaces will be projected from i or from j. This test is based on
the observation (see below) that more accurate view factors are usually computed by projecting the
obstruction toward the nearest surface. After the direction of projection has been chosen, any obstruc-
tions that can see only the source surface are deleted from the list. F1,2 is then computed by adaptive
single area integration with obstruction projection.

Analytic Test

Figure 13. Analytic Test

Shapiro (1983) presents a configuration of surfaces that has an
analytic solution for an obstructed view factor. The test consists
of two directly opposed unit squares (surfaces 1 and 2) with unit
separation and a pair of back-to-back 0.5 x 0.5 squares (surfaces 3
and 4) parallel to the unit squares, centered on a line between the
centers of the unit squares, and 3/4 of for the distance from surface
1 to surface 2. Only surface 1 is visible from surface 3, and only 2
from 4. Figure 13 shows the squares from the side to highlight the
fact that every ray drawn from surface 1 through the obstruction
will intercept surface 2.

Analytic solutions for unobstructed views:
 F3,1 = 0.33681717; F1,3 = 0.084204294; F4,2 = 0.79445272; F2,4 = 0.19861318
 F*1,2 = F*2,1 = 0.19982490 (if 3 and 4 are not present).
Therefore, the analytic solution for the obstructed view is
 F1,2 = F*1,2 – F1,3 = 0.11562061

The results of View3D calculations in Table 1 consist
of the adaptive integration tolerance, ε from equation
(9), the computed view factor, the error compared to
the analytic value, and the number of projection
points used. The first two rows are for shadow
projections from surface 1. The 25 points indicate that
the solution was done with one 9-point and one 16-
point integration – surface 1 was not subdivided. The
125 points in the second row indicate that surface 1
was subdivided one time to achieve a remarkably
accurate answer. The last five rows in the table are for s
F2,1 and use reciprocity to determine F1,2. In this case ma

10
 ε F1,2 error points
10-3 0.11563653 0.00015924 25
10-4 0.11562055 -0.00000006 125

10-3 0.11473675 -0.00088386 525
10-4 0.11526465 -0.00035596 925
10-5 0.11553235 -0.00008826 2925
10-6 0.11560305 -0.00001756 8125
10-7 0.11561626 -0.00000435 18525

Table 1. Results for Analytic Test
hadow projections from surface 2, i.e., compute
ny of the projected shadows will only partially

overlap surface 1. Many more evaluations are being performed, but the error is properly decreasing as ε
decreases.

The results of evaluating the same case with double
area integration and view blockage (equation 10) are
shown in Table 2 for comparison. These results were
obtained with the Chaparral program described below.
Sampling points were distributed both uniformly and
randomly (Monte Carlo) on surfaces 1 and 2 with the
number of points determined by the input
‘mc_nsamples’. These results exhibit the same slow
convergence to a solution shown in Figure 7 for the
calculation of an unobstructed view factor.

sampling: uniform random
mc_nsamples error error
 25 0.001691 -0.003032
 100 0.011172 0.017821
 400 0.003847 0.001563
 2500 0.003289 -0.007019
 10000 0.000414 -0.000892
 40000 0.000111 -0.000775
 250000 0.000315 -0.000253
 1000000 0.000154 -0.000271

Table 2. 2AI Results for Analytic Test

Problem Cases

When obstructing surfaces are close to both surfaces 1 and 2, as in
Figure 14, there is no optimum direction of projection. The
solution will require many adaptive steps to approach an accurate
answer. There is a need for an estimate of accuracy when analytic
solutions are not available, which is generally the case for partially
obstructed views. The following discussion will use enclosures for
test cases. In an enclosure the sum of the view factors from any
surface should be one. The summations will be called “rowsums”.

The maximum value of () 1
1 , −∑ =

N

j jiF will be used as a figure of merit - the “rowsum error”. It is not

necessarily a true representation of accuracy because positive and negative errors for individual view
factors may offset, but it is statistically difficult for errors to cancel across many rows in the view factor
matrix.

 Fig. 14. Problem Case 1

A more serious case is shown in Figure 15 which is a cross-
sectional representation of a cubic enclosure with 9 unit
squares on each face of a cubic obstruction also composed of
unit squares near its center giving a total of 60 surfaces. A
small portion of surface 1, which extends from a to b, can view
a portion of surface 2 through the space above the obstructing
cube. Surface 2 can be viewed only from the area between
points a and c. If there are no integration points in that area,
adaptive subdivision will not occur in that area and F1,2 will be
computed as 0. Gaussian integration helps on this problem
because it tends to force the integration points toward the edge
of the surface as was shown in Figure 6. The coordinates of the

outer points for 4×4 integration are at 0.06943 times the width of the surface from its edge, while
uniform subdivision would put those points at 0.125 from the edge.

 Figure 15. Problem Case 2

11

Table 3 shows the results
for F1,2 with different
shifts of the obstruction
and convergence factors,
ε. When the obstruction is
centered in the enclosure
(∆z = 0), smaller ε values
give rapidly decreasing
rowsums. For ∆z shifts
between 0.01 and 0.04
the rowsums are not converging to zero because the values of F1,2 are being computed as zero instead of
the more accurate values shown in the final column of Table 3. When the shift reaches 0.05 the rowsums
are again decreasing well because the outer-most integration points on surface 1 can see surface 2. The
values of F1,2 shown in the final column were computed by forcing additional polygon subdivisions until
very accurate rowsums were achieved. These values indicate the absolute errors in F1,2 are not very
large. Relative error is not a meaningful term when F1,2 is incorrectly computed to be zero.

Shift : convergence factors ε : F1,2
 ∆z : 1.0e-4 1.0e-5 1.0e-6 1.0e-7 :
 0.00 : 0.000151 0.000024 0.000006 0.000001 : 0.000000
 0.01 : 0.000152 0.000030 0.000028 0.000028 : 0.000006
 0.02 : 0.000185 0.000114 0.000112 0.000060 : 0.000021
 0.03 : 0.000258 0.000257 0.000255 0.000062 : 0.000046
 0.04 : 0.000205 0.000107 0.000069 0.000075 : 0.000082
 0.05 : 0.000240 0.000096 0.000014 0.000006 : 0.000128

 Table 3. Case 2 Figure of Merit Values: ()
max1 , 1−∑ =

N

j jiF

These problem cases would also be difficult for most other obstructed view factor procedures.

Benchmark Tests

The next step in evaluating View3D is to compare it against another program. The Chaparral program
from Sandia National Laboratory (Glass, 2001) was chosen because of its recent development. It has two
fundamentally different methods to compute view factors for 3D geometries: “adaptive” and
“hemicube”. The adaptive method computes view factors one pair at a time using a collection of algo-
rithms that adapt to the geometry of the problem. It includes testing for obstructions between surfaces
pairs and then the 0LI method for unobstructed views or 2AI with blockage for the obstructed views.
The hemicube method calculates the view factors from one surface to all other surfaces and proceeds
row-by-row through the view factor matrix. The hemicube method is analogous to Nusselt’s hemi-
sphere method but uses the hemicube for computational efficiency. It was developed (Cohen et al. 1985)
to use the radiosity method for the computer graphic display of scenes composed of large numbers of
surfaces.

Figure 16 compares the three methods
for a simple test case consisting of a
4×4×4 cube made up of unit squares
centered in a 10×10×10 cube also com-
posed of unit squares for a total of 696
square surfaces. For the hemicube
method the number of surface subdi-
visions for close surfaces was found to
be the most important one of several
input parameters and was varied from 1
to 7. For the adaptive method the
number of uniformly spaced samples on
each surface varied from 3×3 to 40×40.
For View3D the integration tolerance
was varied from 10-2 to 10-7.

Comparison of Methods

0.000001

0.00001

0.0001

0.001

0.01

0.1

0 20 40 60 80 100

Seconds

M
ax

 R
ow

Su
m

 E
rr

or

Adaptive
HemiCube
View3D

 Figure 16. Comparison of Methods
For this case the primary advantage of View3D is the much smaller rowsums achieved without
excessive computation times.

12

It is also important to
determine how the dif-
ferent methods respond
to the size of the prob-
lem. A series of similar
test cases was created
consisting of a small
cube made up of unit
squares centered in a
large cube also composed of unit squares. Table 4 summarizes the six test cases indicating the total
number of surfaces, the number of surfaces on the small obstructing cube, and the percentage of surfaces
that are potential view obstructions – none of the surfaces of the enclosing cube can obstruct a view.

 total obstr. %
name description srf. srf. obstr.
BB52 : 2x2x2 box in 5x5x5 box : 174 : 24 : 13.8
BB73 : 3x3x3 box in 7x7x7 box : 348 : 54 : 15.5
BB104 : 4x4x4 box in 10x10x10 box : 696 : 96 : 13.8
BB156 : 6x6x6 box in 15x15x15 box : 1566 : 216 : 13.8
BB208 : 8x8x8 box in 20x20x20 box : 2784 : 384 : 13.8
BB2510 : 10x10x10 box in 25x25x25 box : 4350 : 600 : 13.8

Table 4. Test Cases of Increasing Size

The accuracy comparisons shown in Figure 17 for the range of test cases are consistent with Figure 16.
The adaptive method was used with 25 and 100 samples from each surface and the hemicube method
used 2 and 4 surface subdivisions. The accuracy of the hemicube method first gets better as the
separation between surfaces increases then gets worse as aliasing errors increase in the grid on each face
of the hemicube. The accuracy of the adaptive method increases as the average relative separation
between surfaces increases with the number of surfaces. The rowsum error for View3D is below 10-3 for
an integration tolerance of 10-4. “View3D-O” will be described later.

Accuracy Comparison

0.0001

0.001

0.01

0.1

100 1000 10000

Number of Surfaces

M
ax

 R
ow

Su
m

 E
rr

or Adap-25
Adap-100
HC-2
HC-4
View3D
View3D-O

 Figure 17. Accuracy Comparison

13

Calcution Time Comparison

1

10

100

1000

10000

100 1000 10000

Number of Surfaces

Se
co

nd
s

Adap-25
Adap-100
HC-2
HC-4
View3D
View3D-O

 Figure 18. Calculation Time Comparison

The comparison of calculation times is shown in Figure 18 and Table 5.

case Nsrf View3D View3d-O Adap-25 Adap-100 HC-2 HC-4
BB52 174 1.65 1.04 2.14 2.69 3.41 9.49
BB73 348 4.40 2.64 6.26 8.02 9.45 24.55
BB104 696 15.98 7.63 34.05 39.60 27.14 52.02
BB156 1566 92.00 37.40 323.23 407.93 64.70 127.26
BB208 2784 285.06 105.79 1403.24 1575.70 149.18 280.18
BB2510 4350 762.47 264.08 5534.41 5598.19 296.49 524.10

Table 5. Computation Times Benchmark

Notable trends include:

• The rapidly increasing computation times for Chaparral’s adaptive method – going from 2 s to
5600 s as the number of surfaces increases from 174 to 4350.

• The slower increase for View3D that reaches 762 s for the largest case.
• The different trend for the hemicube method that takes longer than the other two methods for

cases with a small number of surfaces but a much shorter time for cases with many surfaces.

Other tests indicate that most of the calculation time in the adaptive method was being used to determine
which surfaces were obstructions. The initialization used by View3D to eliminate the surfaces that can
never obstruct, in this case those forming the outer cube, seems especially helpful. Chaparral tests all
surfaces as potential obstructions for every surface pair. This is probably the main reason it is much
slower than View3D for the cases with many surfaces.

View3D has an option to group obstruction surfaces as subsurfaces of a single surface – in these cases
the unit squares of the obstructing cubes can be grouped into six surfaces that represent the faces of the
cubes. In case BB2510 the 600 unit squares are reduced to six squares for the purpose of evaluating
view shadows. This reduces the computation time from 762 s to 264 s. Therefore, about two-thirds of
the 762 s was spent processing obstructions. Results for View3D grouping the obstructions are labeled
“View3D-O” in Figure 18 and Table 5. This method of surface grouping is optimal for the tests shown
so the calculation times should not be considered typical. The adaptive method includes a grouping
method, binary space partitioning, which is more general.

The hemicube method is both slower and less accurate than View3D for the tests involving small
numbers of surfaces. Such small numbers would be representative of rooms and their furnishings in

14

building energy analysis. Hemicube becomes faster than View3D at about 1000 surfaces although
accuracy still suffers. It is becoming less accurate because of aliasing errors on the hemicube grid. This
problem could be improved by using a finer grid but at the cost of greater execution time.

Conclusions and Possible Future Developments

This report has demonstrated that adaptive integration (as implemented in View3D) can compute view
factors more accurately than ray tracing or hemicube methods (as implemented in Chaparral) and faster
than the ray tracing method. Methods that use a predetermined integration method or number of
integration subdivisions will tend to either compute some view factors less accurately than desired or
waste time computing others too accurately. Adaptive integration is especially applicable when the
surfaces are relatively close – a condition that occurs in rooms with odd shapes and/or furnishings.
View3D has a speed advantage for configurations with a relatively small number of surfaces – again
typical of rooms. Therefore, the methods in View3D have notable advantages for computing room view
factors for building energy analysis programs. The rapid elimination of potential view obstructions in
the view between any pair of surfaces is very important for problems involving large numbers of
surfaces, and will probably be the main emphasis of future developments.

The computational performance of View3D for relatively large numbers of surfaces, on the order of two
thousand, indicate that it could be the basis for modeling the more challenging problem of the radiant
environment around buildings as well. With slight modification the shadow projection and overlap
method can be used to model the shadowing of direct sunlight. View factors can also model the
incidence of diffuse light on the building. This includes the light reflected by the ground and adjacent
buildings with those surfaces in sunlight or shadow and, by dividing the sky into many patches, the
effect of shadowing surfaces on anisotropic light. View factors can also model the long-wavelength
radiant interchange between the building and its surroundings.

Ray-tracing methods automatically allow the modeling of non-ideal surfaces – those that are not
diffusely emitting and reflecting. Hottel and Sarofim (1967, chapter 5) describes a method of reflected
images that can be used to compute view factors for specular and partially specular surfaces. This
method is probably better than ray tracing if only a small fraction of the total number of surfaces are
specular. Adding such a reflection algorithm would permit modeling of specular reflections from
adjacent glass covered buildings.

There are some methods used in Chaparral that could be advantageously used in View3D and vice versa.
Chaparral could benefit from the method of automatically determining which surfaces can never obstruct
views and it might benefit from placing the ray tracing points according to 2D Gaussian integration.
View3D could use the analytic algorithm for unobstructed views and, for cases involving large numbers
of surfaces, a method like binary space partitioning which permits the elimination of groups of surfaces
in the determination of the potential view obstructions.

Acknowledgement

The U.S. Department of Energy, Office of Building Technologies, supported this work under
Interagency Agreement No. DE-A101-9CE21042.

15

References

Cohen, M.F. and D.P. Greenberg. 1985. “The Hemi-Cube -- A Radiosity Solution for Complex
Environments,” ACM SIGGRAPH, Vol 19, No 3.

Emery, A.F., O. Johansson, M. Lobo, A. Abrous. 1991. “A Comparative Study of methods for
Computing the Diffuse Radiation Viewfactors for Complex Structures,” ASME Journal of Heat
Transfer, 113: 413-422.

Glass, M.W. 2001. “CHAPARRAL v2.x: A Library for Solving Enclosure Radiation Heat Transfer
Problems” (draft), Sandia National Laboratories.

Hottel, H.C. and A.F. Sarofim. 1967. Radiative Transfer, McGraw-Hill, New York NY.

Mitalas, G.P. and D.G. Stephenson. 1966. “FORTRAN IV Programs to Calculate Radiant Interchange
Factors,” National Research Council of Canada, Division of Building Research, Ottawa, Canada,
BDR-25.

Moan, T. 1974. “Experiences with Orthogonal Polynomials and ‘Best’ Numerical Integration Formulas
on a Triangle; with Particular Reference to Finite Element Approximations,” Zeitschrift Fuer Ange-
wandte Mathematik und Mechanik, 54:501-508.

Newman, W.M., and R.F. Sproull. 1973. Principles of Interactive Computer Graphics, McGraw-Hill.

Pavlidis, T. 1982. Algorithms for Graphics and Image Processing, Computer Science Press, Rockville
MD.

Press, W.H., S.A. Teukolsky, W.T. Vetterling and B.P. Flannery. 1992. Numerical Recipes in C: the Art
of Scientific Computing, Second Edition, Cambridge University Press.

Schroder, P. and P. Hanrahan, 1993. “A Closed Form Expression for the Form Factor Between Two
Polygons”, Department of Computer Science, Princeton University, Technical Report CS-404-93.

Shapiro, A.B. 1985. “Computer Implementation, Accuracy, and Timing of Radiation View Factor
Algorithms,” ASME Journal of Heat Transfer, 107: 730-732.

Walton, G.N. 1978. “The Application of Homogeneous Coordinates to Shadowing Calculations,”
ASHRAE Transactions, Vol 84, Part I.

Walton, G.N., 1986. “Algorithms for Calculating Radiation View Factors Between Plane Convex
Polygons With Obstructions,” National Bureau of Standards, NBSIR 86-3463 (1987 - shortened report in
Fundamentals and Applications of Radiation Heat Transfer, HTD-Vol.72, American Society of
Mechanical Engineers).

Walton, G.N. 1993. “Computer Programs for Simulation of Lighting/HVAC Interactions,” National
Institute of Standards and Technology, NISTIR 5322.

16

Appendix: Numerical Processing of Convex Polygons

The processing of geometric data in the view factor algorithms is based on conventional vector
calculations which are familiar to most engineers and on homogeneous coordinate (HC) techniques
which have found extensive application in computer graphics but are unfamiliar to most engineers. This
appendix reviews the fundamental properties of two-dimensional HC and describes a method for
processing overlapping convex polygons.

Homogeneous Coordinates

HC are described in most textbooks about the mathematics of computer graphics, such as [Newman and
Sproull, 1973; Pavlidis, 1982]. Points and lines in HC are represented by a single form which allows
simple vector operations between those forms. A point (X, Y) is represented by a three element vector
(x, y, w) where x = wX, y = wY, and w is any real number except zero. A line is also represented by a
three element vector (a, b, c). The directed line (a, b, c) from point (x1, y1, w1) to point (x2, y2, w2) is
given by

 (12)
),,(

),,(),,(),,(

122112211221

222111

yxyxxwxwwywy
wyxwyxcba

−−−=
×=

The sequence in the cross product is a convention to determine sign. The condition that a point (x, y, w)
lie on a line (a, b, c) is that
 (13) 0),,(),,(=++=⋅ cwbyaxwyxcba

Normalize a point by dividing its coordinates by w. Then if

 01,,),,(>





⋅

w
y

w
xcba (14)

the point (x, y, 1) lies to the left of the line, and if it is less than zero, the point lies to the right of the line
(as viewed from the starting point of the line). The intercept (x, y, w) of line (a1, b1, c1) and line
(a2, b2, c2) is given by
 (15)),,(),,(),,(222111 cbacbawyx ×=

The use of HC as outlined above provides a consistent method and notation for defining points and lines,
for determining intercepts, and for determining whether a point lies to the left, to the right, or on a line.
Normalization provides a means of transforming between HC and Cartesian coordinates. Thus, if (X, Y)
is the Cartesian coordinate pair of a point, its HC description is (X, Y, 1). Similarly, the HC point (x, y,
w) can be transformed to the Cartesian point (x/w, y/w).

The area, A, of a plane polygon consisting of n sequential vertices (x1, y1), (x2, y2), ..., (xn, yn) is given by
)(1132211132212

1 xyxyxyxyyxyxyxyxA nnnnnn −−−−−++++= −− (16)

17

 If the HC of the vertices have all been computed with the same value of w (for example w = 1), then
area is expressed more simply in terms of the c coordinates of the edges as

 ∑
=

=
n

i
ic

w
A

1
22

1
 (17)

The area is positive if the vertices are in counter-clockwise sequence and negative if clockwise.

Problems may occur during computation because of the critical importance of the value zero in
determining the relationship of a point to a line in equation (3). Computer arithmetic with 'real' numbers
is subject to round-off error, so the tests against zero in equations (2) and (3) may fail. To prevent this,
the tests are done against some small number, typically 10-5 times the area of the surfaces involved in the
calculation.

Numerical Processing of Convex Polygons

The numerical processing of polygons to determine the portions that do or do not overlap will be shown
by example. Figure A1 shows two polygons that partially overlap. Polygon A consists of vertices
a-b-c-d in clockwise sequence and polygon B consists of vertices e-f-g-h-i. These are convex polygons -
- the internal angle at every vertex is less than 180°. Convexity is necessary for the simple mathematical
operations used to determine the part of B that overlaps A and the part of B that is outside A. This is
done by successively testing the vertices of B against each edge of A.

 Figure A1 Two Overlapping Polygons

 Figure A2 Test against Side a-b

Figure A2 shows the first test against edge a-b. Application of equation (3) will show that vertices e and
f are to the left of edge a-b (extended) and vertex g is to the right. Since f and g are on opposite sides of
edge a-b, that edge must intercept edge f-g. That intercept is computed by equation (4) and labeled j in
the figure. Vertices h and i are also to the right of edge a-b. Vertices i and e are on opposites sides of the
edge so another intercept at K is computed. The portion of polygon B that lies to the left of edge a-b
(polygon C: vertices e-f-j-k) cannot overlap polygon A. The portion to the right of edge a-b (polygon
B*: vertices j-g-h-i-k) may overlap depending on the results of tests against other edges. C and B* are
convex polygons.

Polygon B* is then tested against edge b-c of polygon A as shown in Figure A3. Vertices j and g are to
the left of edge b-c; vertex h is the edge. Vertices i and k are to the right of edge b-c. Vertices k and j are
on opposites sides of the edge so another intercept is computed. It is identical to vertex b on polygon A.

18

19

 Figuare A3 Test against Side b-c

 Figure A4 Tests against Sides c-d and d-a

Polygon D is another part of B that is entirely outside polygon A being composed of all vertices (j-g-h-
b) to the left of or on edge b-c. A new B* consisting of vertices (h-i-k-b) on or right of edge b-c remains
to be processed against the remaining edges of polygon A.

Tests against edges c-d and d-a in Figure A4 show that vertices h-i-k-b are all to the right of both edges,
so polygon E (h-i-k-b) is the inter-section of polygons A and B.

If at any time during the tests against an edge of polygon A, it is found that all vertices of B are left of
the edge, then A and B do not overlap. If all vertices of B are on or to the right of all edges of A, then B
is entirely within A. If the area of the overlap is equal to the area of A, then A is within B. Whenever a
polygon split into parts to the left and right of an edge it is possible that one of the new polygons may
have one more vertex than the original. The maximum number of vertices in any single polygon will
tend to remain small because all polygons are convex. Vertices are stored in linked list data structures
that maintain the order of the vertices as the new polygons are created. Polygons are also stored in linked
list data structures to allow the generation of an indefinite numbers of surfaces.

The most common alternative method for evaluating non-overlapping polygon areas divides the base
polygon into many small areas, determines which of those areas lie within the overlap, and adds up the
areas of those not within the overlap. That method can be faster that the method presented above if the
number of small areas is not large, but that leads to relatively inaccurate answers. For example, if a
square is divided into N2 small areas the accuracy of the solution tend to be proportional to N, but the
calculation time will be proportional to N2. High accuracy becomes computationally expensive. This
method provides very accurate answers with execution time dependent only of the total number of
polygons being processed.

This method is used in View3D to evaluate the portion of a polygon that can be seen from an integration
point after the view obstructing surfaces have been projected onto the plane of the polygon. It has
improved the worst-case performance of the original method which computed only overlapping portion
of two polygons (Walton, 1978). The obstructed view factor was computed by subtracting the view
factors to the shadows of the obstruction polygons from the unobstructed view factor. When obstruction
shadows overlapped the view factor to that overlap had to be added back into the total view factor.
Multiple overlaps could become quite complicated. This original method was developed for processing
shadows of sunlight to assess solar heat gains in buildings. The current method should also be used for
that purpose because of its improved worst-case performance.

	Calculation of Obstructed View
	Factors by Adaptive Integration
	Calculation of Obstructed View �Factors by Adaptive Integration
	Abstract
	Background
	Algorithms for Unobstructed View Factors
	Numerical Calculations for Plane Polygons
	Computational Performance: Speed

	Algorithms for Obstructed View Factors
	
	Single Area Integration with Projection
	Adaptive integration is used to control the number of points used for the 1AI integra˜tion. Two view factors are computed for parallelo˜grams using the 9- and 16-point forms shown in Figure 6 (or the 7- and 13-point forms for tri˜angles.) If equation
	Eliminating Potential Obstructions

	If these tests have removed all surfaces from the list of potential obstructions, Fi,j will be computed by one of the algorithms for unobstructed view factors. Otherwise, one more test will be made to determine whether the shadow of the obstructing surfa
	
	
	Problem Cases

	Benchmark Tests
	Conclusions and Possible Future Developments
	Acknowledgement
	Appendix: Numerical Processing of Convex Polygons
	
	Homogeneous Coordinates

