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Challenges

1)1) Furniture and mattress firesFurniture and mattress fires still causestill cause
~1000 deaths/yr and cost $ 500 M/yr~1000 deaths/yr and cost $ 500 M/yr

1)1) ObjectiveObjective: to evaluate the effectiveness of : to evaluate the effectiveness of 
nanoadditive based flame retardantsnanoadditive based flame retardants in reducing in reducing 
the flammability of flexible foamsthe flammability of flexible foams

2)2) Objective Objective : to improve the ability of barrier : to improve the ability of barrier 
fabrics to prevent flame spread in mattresses fabrics to prevent flame spread in mattresses 
and furniture using and furniture using nanoadditivesnanoadditives

2)2) Environmental degradation (UV, oxidation) in fire fighter Environmental degradation (UV, oxidation) in fire fighter 
turnout gearturnout gear severely affects the performanceseverely affects the performance

1)1) Objective :Objective : to evaluate the ability of carbon to evaluate the ability of carbon 
nanotubes to stop these degradation mechanisms nanotubes to stop these degradation mechanisms 
in turnout gearin turnout gear



Barrier Materials

Achieve (by using CNTs in PAN and Cellulose)

• Fire barrier

• Higher strength

• Higher char yield

• Reduced thermal shrinkage

Fire barrier fibers candidates*

• Cotton

• Aramid

• Melamine/aramid

• Novoloid

• Melamine/modacrylic/polyester

*US Consumer Safety Commission Report, 2004

• Fabric combustion creates high heat flux exposure
• Polymers shrink when burned so barriers crack and fail
• Fabric costs focus industry on low performing commodity polymers
• Water insoluble environmentally additives required
• No suitable bench-scale test currently exists for barriers

Barrier failure



Group Experience with PAN

Past studies 

Focusing on

Fibers/Films

Supercapacitor electrodes

Next generation carbon fiber

Showed

• Good CNT (SWNT/MWNT/CNF) dispersion in PAN

• Better mechanical properties

• Good orientation of CNTs

• Reduced thermal shrinkage



Group’s Past Papers on PAN/CNTs

1. “Oriented and Exfoliated single wall carbon nanotubes in polyacrylonitrile”, Polymer, 47, 
(2006)

2. “Single wall carbon nanotube dispersion and exfoliation in polymers”, J. Appl. Polym. Sci., 98 
(3), 985-989 (2005).

3. “Oxidative stabilization of PAN/SWNT composite fiber”, Carbon, 43 (3), 599-604 (2005). 
4. “A comparison of reinforcement efficiency of various types of carbon nanotubes in 

polyacrylonitrile fiber”, Polymer, 46, 10925-10935 (2005).
5. “Structure and properties of polyacrylonitrile/single wall carbon Nanotube composite films”, 

Polymer, 46, 3001-3005 (2005).
6. “The processing, properties, and structure of carbon fibers”, JOM, Publication of the Minerals, 

Metals, and Materials Society, 57, 52-58 (2005).
7. “Properties and structure of nitric acid oxidized single wall carbon nanotube films”, J. Phys. 

Chem B, 108, 16435-16440 (2004).
8. “Morphology and properties of polyacrylonitrile/single wall carbon nanotube composite 

films”, Fibers and Polymers, 45 (3), 198-203 (2004). 
9. “Out-of-plane preferred orientation of SWNT films” Applied Phys Lett. 84 (12) 2172 (2004). 
10. “SWNT/PAN Composite Fibers”,Advanced Materials, 16, 58-61 (2004).
11. “Single Wall Carbon Nanotube Films”, Chemistry of Materials, 15, 175 (2003). 
12. “Quantitative Characterization of SWNT Orientation by Polarized Raman Spectroscopy”, 

Chemical Physics Letters, 378 (3-4), 257-262 (2003).
13. “SWNT/PAN Composite Film-based Supercapacitor,” Carbon, 41, 2440-2442 (2003). 



Experimental

Fiber Spinning:

barrel with a 
circular hole 

in center

isothermal zone 
controlled by 
band heater

die/spinneret

barrel with a 
circular hole 

in center

isothermal zone 
controlled by 
band heater

die/spinneret

2 - 7 mm/min

CB1: DMF/Water = 70/30 CB2: DMF/Water = 20/80 DB: Boiling Water

1- 2 cm

20 - 48 m/min
8 m/min

CB1: first coagulation bath; CB2: second coagulation bath; DB: drawing bath

Barrel diameter = 16 mm
Spinneret  hole diameter = 250 μm

Fiber spools were left to dry in a vacuum oven at 50 °C for at-least 7 days 

MWNT (%) 0 5 10 15 20

Total Draw Ratio 6 6 5 4 2.5



Experimental

Fiber Stabilization:

Fibers
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Dynamic Mechanical Analysis

• Composite fibers showed 
significantly higher storage 
modulus than control PAN 
above 40 °C

• Modulus of 5% composite 
fiber at 100 °C is nearly 5 
times than that of control 
PAN fiber

Storage Modulus @ 1 Hz

PAN

~ 5 times



Dynamic Mechanical Analysis
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• Glass transition temperature (Tg) shifted to higher temperatures with increase in 
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Fiber Shrinkage from TMA
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N2 flow rate: 50 ml/min 
Temperature ramp rate: 5 °C/min

MWNT % 0 5 10 15 20

Shrinkage @ 180 °C 
(%) 17.4 15.6 15.5 13.7 13.5

• Shrinkage is reduced 
after the addition of 
MWNTs



Differential Scanning Calorimetry

In air @ 1 ˚C/min
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PAN Cyclization Reactions

Free Radical Reaction

Ionic Reaction
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Thermogravimetric Analysis of Various Fibers
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N2 flow rates: 90/70 ml/min 
Temperature ramp rate: 5 °C/min

• Weight loss before 170 °C in control PAN can be attributed to DMF loss* 

• Char yield slightly improved after the addition of MWNTs
*b.p. of DMF ~160 °C



PAN/SWNT Fiber Stabilization
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Min, Sreekumar, Uchida, Kumar. Carbon, 43 (2005) 599-604

• Strength improved by 100%
• Modulus improved by 160%
• Strain improved by 115%

After Stabilization (for 10% SWNT fiber)



Tensile Properties (Before and After Stabilization)

• 5% composite fiber showed highest strength 
and modulus

• Properties decreased with increasing % of 
MWNTs 

Before Stabilization

• Properties reduced after stabilization
• 0 and 5% MWNT fibers showed comparable 

strength and strain
• Modulus increased with increasing % of 

MWNTs  

After Stabilization



MWNTs Dispersion in PAN matrix

5% 10%

15% 20%

In certain regions MWNTs are entangled with each other but very well wetted with the polymer.
Though the NT dispersion was good but distribution was not efficient in higher MWNT content systems.



MWNTs recovered on a PTFE filter by dissolving the 15% MWNT/PAN fiber with DMF

Neat MWNTs

Room Temperature DMFBoiling DMF

PAN Coating on MWNTs

100 nm
1 µm

56 (± 10)

27 (± 6)
32 (± 7)



Schematic: PAN Coating on MWNTs

MWNT

PAN Crystallites

Amorphous PAN



Summary

• MWNTs were found to be coated/wetted with PAN

• MWNTs improved the thermo-mechanical properties of PAN fiber

• MWNTs reduced the shrinkage of PAN fiber

“Thank You”

Future Work
• Modify processing …so that MWNTs’ properties can be translated into composite 

fibers at higher concentrations

• Study the NT concentration effect with SWNT/PAN and VGCNF/PAN systems
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Why Ionic Liquid

• Low volatility
• Favorable solvating properties for diverse compounds
• Considered as environmental friendly or “green” solvents
• Many classes of chemical reactions can be performed in ionic liquids
• Known to assist CNT dispersion
• Recent studies show solubility of cellulose in ionic liquids*

NNH3C

Cl

CH3

NNH3C

O

O

CH3

CH3

1-ethyl-3-methylimidazolium acetate 
(EMI acetate)

1-butyl-3-methylimidazolium 
chloride (BMI Chloride)

*Swatloski et al, J. Am. Chem. Soc. 2002, 124, 4974-4975
*Gupta et al, Langmuir 2007, 23(3) 1325-1319



Spinning: Cellulose & Cellulose + 1% MWNT Composite Fiber

• Disperse MWNTs in EMI acetate by shearing
• Cellulose (DP ~800) and cellulose + 1% MWNT in EMI acetate (10 wt % 

sol)
• Spin draw ratio ~ 1
• As spun fiber is kept in methanol bath to extract ionic liquid 
• Dried in vacuum oven at 50 °C for 2-3 days

Coagulation bath, Methanol

Extruder ram

Fiber collection 
spool

Room temp

{~ 1 cm

16 mm

Spinneret 
diameter 120 μm

Cellulose Fiber Cellulose + 1 
wt% MWNT 
Fiber

Dry-jet-wet spinning 



SEM of Cellulose + 1% MWNT Fiber Cross Section

10 μm

2 μm

Uniform dispersion of MWNT in the polymer matrix



TEM of Cellulose + 1% MWNT Composite Fiber

Coating of cellulose on carbon nanotubes observed

CNT

Cellulose



WAXD Analysis on Cellulose Fibers

(a) Cellulose paper (b) Control cellulose fiber (c) Cellulose/MWNT fiber

• Cellulose paper – Cellulose type (I) crystal
• Cellulose & cellulose/MWNT fiber from ionic liquid – Cellulose type (II) crystal

MWNT (002) plane

Crystallinity
(%)

Crystal size 
2θ~20

o

(nm)
f2θ~20

o
FWHM2θ~20

o

(degree)
fMWNT,2θ~26

o

0.107 33

360.106

NA

0.738

1

1

42

45

Control cellulose fiber

Cellulose/MWNT fiber

• Both control cellulose and cellulose/MWNT fibers have comparable crystal structure
• MWNT orientation in composite fiber appears to be high considering no drawing process

f represents Herman’s orientation function

cellulose paper

cellulose fiber

cellulose/MWNT fiber



WAXD Analysis on Cellulose Fibers

Crystallinity
(%)

Crystal size 
2θ~20

o

(nm)
f2θ~20

o
FWHM2θ~20

o

(degree)
fMWNT,2θ~26

o

0.107 33

360.106

NA

0.738

1

1

42

45

Control cellulose fiber

Cellulose/MWNT fiber

f represents Herman’s orientation function

Crystallinity
(%)

Crystal 
size (nm)

Orientation 
(XRay)

Cotton ~ 70 5-10 0.62 - 0.70

Wood pulp 60

Regenerated Cellulose (alkali) 35

Rayon (viscose) 38 - 40 2 - 3 0.31 - 0.91

Rayon (staple fiber) 30 - 40 5 - 7

Cellophane film 30 - 40

From Polymer Handbook, Fourth Edition



FTIR Spectroscopy

• Appearance of a new contribution at ~ 3115 cm-1 due to 
intermolecular H-bonding [OH(2)-O2]

• Indicates transformation of Crystal Structure I for cellulose pulp  to 
crystal structure II for cellulose fiber
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Tensile Properties

Fiber Diameter 
(μm)

Strength 
(MPa)

Modulus
(GPa)

Strain to 
Failure (%)

Cellulose 29.2 ± 4.1 113 ± 26 8.4 ± 1.7 5.2 ± 0.9

Cellulose + 1%
MWNT

26.2 ± 1.2 137 ± 7.5 10.8 ± 0.5 7.4 ± 1.7

Tensile 
Strength 
(MPa)

Tensile 
Modulus 
(GPa)

Strain to 
Failure 
(%)

Reference

Rayon fiber 500 2.2

8.0

Cotton (1% formaldehyde 
crosslinked)

740 1.8 4.7 D.S. Verma et al (1974) 18, 3745-
3759

Canche-Escamilla et al, J. Mater. 
Sci (2006) 41, 7296-7301

Cotton fiber (Grade G.12) 640 P.Bhama Iyer, S. Srenivasan et al, 
J. App. Polym Sci (1991) 42, 2915-

2922

Cotton fiber (treated with 5N 
KOH)

550 S.H. Zeroniam, K.W. Alger, J. App 
Polym Sci (1976) 20, 1689-1693

Cellulose fiber (DP ~ 650, 
from RTIL)

204 Hao Zhang et al, Adv Mater. (2007) 
19, 689-704



Thermogravimetric Analysis (TGA)
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Char Yield at 800 °C in Nitrogen 
@ 10 °C/min

Yield (%) Reference

Cotton (@ 800 °C in N2) 12 Dae-Young Kim et al, Cellulose (2001) 8, 
29-33

Cotton (impregnated with 5.6% 
H2SO4)

38 Dae-Young Kim et al, Cellulose (2001) 8, 
29-33

Cotton (530 °C in air, using 
hydroxymethyl dicyanamide flame 
retardant)

34.5 C. M. Tian et al, J of Therm Anal & Cal. 
(1999) 55, 93-98



TGA: Quantification of EMI Acetate in Fiber
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Conclusions 

• Uniform dispersion of MWNT in cellulose

• Reinforcement of cellulose by addition of 1% MWNT 

• Transformation of cellulose-I for starting pulp to cellulose-II for 
cellulose fiber

• High orientation of MWNT even at low draw ratio

• Enhanced char yield for cellulose and composite fiber relative to 
cellulose pulp

• High retention of ionic liquid in cellulose fiber



Future Work

• Optimize coagulation conditions for ionic liquid removal 
during/after spinning

• Composite fiber at higher carbon nanotubes loading

• Spinning cellulose and composite fiber using higher 
molecular weight cellulose (DP 1300)

• Study the fire barrier properties of cellulose and composite 
fibers



Questions ?



Uniform MWNTs Dispersion in PAN matrix

5% 10%

15% 20%20%



PAN Coating on MWNTs

Room Temperature DMF

SEM image of MWNTs recovered on a PTFE filter by dissolving 
the 15% MWNT/PAN composite fiber with DMF

Boiling DMFNeat MWNTs
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